European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk

Ulf Landmesser1*†, M. John Chapman2†, Michel Farnier3, Baris Gencer4, Stephan Gielen5, G. Kees Hovingh6, Thomas F. Lüscher7, David Sinning1, Lale Tokgöz8, Olov Wiklund9, Jose Luis Zamorano10, Fausto J. Pinto11, and Alberico L. Catapano12 on behalf of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS)

1Department of Cardiology, Charité—Universitätsmedizin Berlin (CBF), Hindenburgdamm 30, 12203 Berlin, Berlin Institute of Health (BIH), and Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Germany; 2National Institute for Health and Medical Research (INSERM), University of Pierre and Marie Curie, Pitie-Salpetriere Hospital, 47 Hôpital boulevard, Paris, 75013 France; 3Lipid Clinic, Point Medical, Dijon, France; 4Cardiology Division, Department of Specialties in Medicine, Geneva University Hospitals, 4, rue Gabrielle-Perret-Gentil, 1211 Geneva, Switzerland; 5Department of Internal Medicine III, Martin-Luther-University Halle/Wittenberg, University Hospital, Dept. of Int. Medicine III, Universitätsstr 19/2006108, Halle/Saale, Germany; 6Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; 7University Heart Center, Cardiology Clinic, University Hospital Zurich, Ramistrasse 100, 8091 Zurich and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; 8Hacettepe University, Faculty of Medicine, Sihhiye, Ankara, Turkey; 9Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden; 10Department of Cardiology, University Hospital Ramón y Cajal, Colmenar Viejo Road, Km. 9.1, Madrid, Spain; 11Cardiology Department, CCLL, CAML, Faculdade de Medicina, Universidade de Lisboa, Alameda da Universidade, Lisboa, Portugal; and 12Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan and Multimedica IRCSS Milano, Milan, Italy

Received 4 May 2016; revised 8 August 2016; accepted 15 August 2016; online publish-ahead-of-print 27 October 2016

See page 2256 for the editorial comment on this article (doi: 10.1093/eurheartj/ehw480)

Introduction

Atherosclerotic cardiovascular disease (ASCVD) underlies the thrombotic events intimately associated with myocardial infarction, a significant proportion of ischaemic strokes, as well as critical limb ischaemia. Such events confer substantial mortality, physical and/or mental disability, and cost for the individual and society. Indeed, no finite value can be attributed to the cost to the individual, although survival and subsequent quality of life are critical factors, especially in young individuals with ASCVD. Although the advent of precision medicine and innovative treatments have been the driver for an individualized approach to patient management and prevention, the ever-increasing financial restraints in healthcare systems worldwide often require clinical benefit to be balanced with the cost of a given intervention.

The causality of plasma low-density lipoprotein-cholesterol (LDL-C) and reduced LDL receptor-mediated LDL uptake in the pathophysiology of ASCVD has been established beyond any reasonable doubt. For patients at very high risk of premature ASCVD, including those with familial hypercholesterolaemia (FH) without ASCVD, elevated LDL-C is a common risk factor. Indeed, high LDL-C levels are prevalent in both FH and non-FH patients in the acute secondary prevention setting. In the case of the latter, polygenic effects may account for an elevated LDL-C concentration as reflected by genetic risk scores.

The key clinical issue is attainment of guideline-recommended LDL-C levels (<1.8 mmol/L or 70 mg/dL) for patients at very high cardiovascular risk. Even with high-intensity statin treatment, a substantial proportion of these patients will remain above this LDL-C goal due to <50% lowering of LDL-C levels, in part as result of
pharmacogenetic effects that underlie wide inter-individual variability in statin response. This eventuality emphasizes the need for additional LDL-C reduction with new therapeutic approaches which target these atherogenic particles.

Proprotein convertase subtilisin/kexin type 9 (PCSK9), a member of the serine protease family, plays a key role in the regulation of hepatic LDL receptor activity. Subjects with sequence variants in the gene coding for PCSK9 (loss-of-function) that are associated with lower levels of LDL-C have a substantially reduced risk of coronary disease; conversely, subjects heterozygous for a gain-of-function mutation of PCSK9 present with a phenotype consistent with FH. These findings have set the stage to investigate PCSK9 inhibition as an innovative therapeutic approach to improve control of elevated LDL-C levels.

Several clinical studies with different monoclonal antibodies against circulating PCSK9, either alone or in addition to statin therapy, have confirmed profound reductions of LDL-C levels (by up to ~60%). Evidence to date indicates that these PCSK9 inhibitors are generally well tolerated, with injection site reactions typically reported by about 5% of patients in clinical trials, and no increase in the frequency of creatine kinase (CK) elevations, myalgia or muscle symptoms. A recent meta-analysis has suggested a possible signal for increased frequency of neurocognitive events; although it should be borne in mind that reporting of neurocognitive symptoms was not systematically defined in these trials, and the absolute numbers of events were low. Although larger and longer-term studies are needed to further establish safety and efficacy for reduction of cardiovascular events in patients at high and very high cardiovascular risk, one post hoc analysis with alirocumab and one prespecified exploratory analysis with evolocumab have reported a reduced rate of major adverse cardiovascular events associated with PCSK9 inhibition. These data have to be interpreted with caution, because the number of cardiovascular events in each study was low; definitive large randomized trials on the efficacy and safety of this novel therapeutic approach to reduce cardiovascular events are ongoing. Moreover, further data on the safety of PCSK9 antibody therapy with respect to neurocognitive effects are awaited from the EBBINGHAUS study with evolocumab, as well as planned studies with alirocumab and bococizumab.

As two antibodies are already approved in Europe (see Box 1) and in clinical use, the main purpose of this consensus document is to discuss the appropriate clinical use of PCSK9 antibodies in patients at very high cardiovascular risk who have substantially elevated LDL-C levels on maximal statin/ezetimibe therapy. The LDL-C threshold values for considering PCSK9 monoclonal antibody therapy were agreed based on consideration of absolute cardiovascular risk and the absolute LDL-C reduction required. This approach is supported by the Cholesterol Treatment Trials’ Collaboration, which showed that absolute LDL-C reduction is one of the key determinants of absolute cardiovascular risk reduction.

Consistent with European guidelines, this consensus document focuses on three priority groups: (i) patients at very high risk not at LDL-C goal, i.e. with documented ASCVD (clinical or unequivocal on imaging, with plaque on coronary angiography or carotid ultrasound), including those with progressive ASCVD [i.e. repeated acute coronary syndromes (ACSs), repeated unplanned coronary revascularizations, or repeated ischaemic strokes within 5 years of the index event], or diabetes mellitus with target organ damage or with a major risk factor such as marked hypercholesterolaemia or marked hypertension; (ii) patients with FH without ASCVD; and (iii) patients in any of these groups with statin intolerance. Although patients with severe chronic kidney disease (glomerular filtration rate <30 mL/min/1.73 m²) are by definition also at very high risk, to date this group has been excluded from clinical trials with PCSK9 inhibitors and therefore no recommendations can be made at this time. This document offers decision algorithms to assist the clinician in identifying those very high risk patients who are likely to approach LDL-C goal as a consequence of at least 50% lowering of LDL-C levels and thus likely derive a relevant reduction in absolute cardiovascular risk. These recommendations aim to provide support in appropriately allocating a highly effective LDL-C lowering therapy, while also taking account of financial restraints within healthcare budgets. Hence, the recommended patient selection is more conservative than the approved treatment indications.

Patients with very high cardiovascular risk

For patients at very high risk, lowering LDL-C levels to the goal of <1.8 mmol/L (<70 mg/dL) and/or achieving ≥50% LDL-C reduction when this goal cannot be reached is a Class IA recommendation. In guidelines, statins are indisputably the mainstay of LDL-C

Box 1 Approved indications for alirocumab and evolocumab in Europe

<table>
<thead>
<tr>
<th>Indication</th>
<th>PCSK9 inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults with primary hypercholesterolaemia (heterozygous familial and non-familial) or mixed dyslipidaemia, as an adjunct to diet:</td>
<td>Alirocumab<sup>a</sup> Evolocumab<sup>b</sup></td>
</tr>
<tr>
<td>– in combination with a statin or statin with other lipid-lowering therapies in patients unable to reach LDL-C goals with the maximum tolerated dose of a statin or,</td>
<td></td>
</tr>
<tr>
<td>– alone or in combination with other lipid-lowering therapies in patients who are statin-intolerant, or for whom a statin is contra-indicated.</td>
<td></td>
</tr>
<tr>
<td>Adults and adolescents ≥12 years with homozygous familial hypercholesterolaemia in combination with other lipid-lowering therapies</td>
<td>Evolocumab<sup>b</sup></td>
</tr>
</tbody>
</table>

^aThe initial dose for alirocumab is 75 mg once every 2 weeks. Patients requiring larger LDL-C reduction (≥60%) may be started on 150 mg once every 2 weeks. Evolocumab is given 140 mg every 2 weeks or 420 mg once monthly.

^bThe initial recommended dose is 420 mg once monthly, uptitrated after 12 weeks to 420 mg once every 2 weeks if a clinically meaningful response is not achieved. Patients on apheresis may initiate treatment with 420 mg every 2 weeks to correspond with their apheresis schedule.
lowering, although the benefit of treatment will only be replicated in real life if patients are treated appropriately, and adhere to the prescribed treatment regimen. Data from registries show that this is a major issue, as only 35–40% of patients with a recent ACS or with stable coronary artery disease prescribed a statin attain LDL-C goal.20,21 Real-world goal attainment may be even lower; in EUROASPIRE IV only 19% of all coronary artery disease patients had LDL-C levels below goal.22 Thus, the importance of adherence with statin treatment should be emphasized in discussions between the clinician and patient, before consideration of additional treatment.

Several clinical studies have established the efficacy of PCSK9 monoclonal antibody therapy in lowering LDL-C levels in high to very high risk patients not at LDL-C goal on maximally tolerated efficacious statin therapy (i.e. using atorvastatin 40–80 mg or rosuvastatin 20–40 mg), including those with type 2 diabetes.15,23 Unfortunately, in the majority of studies PCSK9 inhibitors have been second-line therapy on top of maximally tolerated statins, whereas in the clinical setting, ezetimibe is typically recommended as combination therapy with statins in selected patients when a specific LDL-C goal is not reached with the maximally tolerated dose of a statin.4,5,24 Furthermore, definitive results must be awaited from ongoing outcomes studies in patients with a recent ACS (ODYSSEY OUTCOMES study with alirocumab); with a myocardial infarction, ischaemic stroke, or symptomatic peripheral artery disease (FOURIER study with evolocumab), or at high risk of a cardiovascular event and with LDL-C levels >1.8 or >2.6 mmol/L (SPIRE-1 and SPIRE-2 studies, respectively, with bococizumab).16,17,25,26 Similarly, the impact on progression of coronary atherosclerosis, on top of statin therapy, evaluated by intravascular ultrasound, will give further insights (GLAGOV study with evolocumab).27

On the basis of available evidence, this Task Force recommends that a PCSK9 inhibitor may be considered in the defined very high risk patients, i.e. with ASCVD (clinical or unequivocal on imaging), or diabetes mellitus (with target organ damage or with a major cardiovascular risk factor),3 who despite recommended maximally tolerated statin plus ezetimibe therapy require more than 50% reduction in LDL-C levels (i.e. with LDL-C levels >3.6 mmol/L or >140 mg/dL) to reach the recommended goal (<1.8 mmol/L or <70 mg/dL) (Figure 1).4 This threshold LDL-C value was selected as this Task Force agreed that the absolute LDL-C reduction is one of the determinants of the absolute cardiovascular risk reduction. Patients with LDL-C >3.6 mmol/L will have >50% reduction in LDL-C levels after PCSK9 inhibition, i.e. an absolute LDL-C reduction of >1.8 mmol/L. Recognizing that patients with rapidly progressive ASCVD are at even higher risk, a lower LDL-C threshold of >2.6 mmol/L or >100 mg/dL was considered for initiation of a PCSK9 inhibitor (Figure 1). The Task Force recognizes that ASCVD patients with additional factors indicating a particularly high absolute cardiovascular risk and with LDL-C levels between 2.6 and 3.4 mmol/L (100 and 140 mg/dL) may be considered for PCSK9 inhibition on an individual basis according to the attending clinician’s judgement of the absolute risk of the patient.

The recommendations aim to identify patients at highest risk who are most likely to derive profound absolute LDL-C reduction and therefore the greatest benefit from PCSK9 inhibition, while also taking into account the financial restraints within healthcare budgets.

Standardized screening for FH in patients with substantially elevated LDL-C levels is also recommended. The modified Dutch Lipid Clinic Network Criteria, in which a score is derived from the LDL-C level, the family and personal history of premature ASCVD, and the presence of tendon xanthomas or corneal arcus, is one possible approach (Box 2).38 Although genetic testing (a component of the Dutch Lipid Clinic Network Criteria) is not considered mandatory, where available or accessible, this can be clinically helpful, within the context of cascade screening, for clinical management at the family level.

Patients with familial hypercholesterolaemia

Familial hypercholesterolaemia is an autosomal co-dominant inherited disorder, characterized by elevated serum LDL-C levels and increased risk for ASCVD, which has been sub-classified into heterozygous (He) and homozygous (Ho) forms depending on the presence of one or two affected alleles in genes encoding the LDL receptor, apolipoprotein B or PCSK9.29–31 Although FH is one of the most common inherited conditions, evident in about 1 in 200–250 individuals in the general population,23,24 the vast majority of HeFH patients are undetected, with clinical diagnosis often after the acute event.6,34 Despite conflicting data for the residual cardiovascular risk in FH patients on lipid lowering treatment, mainly statin, almost all have ASCVD at the time of death.35–38

As the nature of the causative gene defect may have variable impact on the severity of HeFH, treatment decisions are currently guided by the LDL-C level and the presence of other risk factors that indicate a very high cardiovascular risk. These include diabetes mellitus, lipoprotein(a) >50 mg/dL, marked hypertension, and premature familial ASCVD (<55 years in males and <60 years in females), as defined by the Sixth Joint Task Force (2016)4 and the European Atherosclerosis Society Consensus Panel on FH.29,30 Treatment should be initiated as early as possible, as the age of starting treatment is a key determinant of later phenotypic severity.39 Patients should be titrated to the maximally tolerated dose of efficacious statin (preferably atorvastatin or rosuvastatin); if LDL-C levels are still above recommended goals (<1.8 mmol/L or <70 mg/dL in patients with ASCVD, and <2.6 mmol/L or <100 mg/dL in patients without ASCVD), addition of ezetimibe is recommended before consideration of a PCSK9 inhibitor.29,30

Despite statin–ezetimibe combination therapy, however, a significant proportion of patients fail to attain LDL-C goal.41,42 This panel recognizes that addition of a PCSK9 inhibitor is a very attractive and efficacious new option for HeFH patients who typically need 50–60% incremental LDL-C reductions to achieve LDL-C goal.43,44 However, until results from major outcomes trials are reported, the panel proposes that PCSK9 inhibitor treatment may be considered for severe FH patients with ASCVD (as discussed above), as well as those without ASCVD (clinical or on imaging) and LDL-C levels >5.0 mmol/L or >200 mg/dL despite maximally tolerated statin/ezetimibe therapy.

For patients with additional risk factors as defined above [diabetes mellitus, elevated lipoprotein(a) >50 mg/dL, marked hypertension, and premature familial ASCVD (<55 years in males and <60 years in females)], the LDL-C threshold is lower, i.e. >4.5 mmol/L or >175 mg/dL (see Box 3 and Figure 2). These suggested LDL-C
thresholds are based on the consensus of this Task Force and also take into account the financial restraints within healthcare budgets.

For HoFH patients, lipid-lowering therapy, including LDL apheresis where available, should be started as early as possible.\(^{30,31}\) To date, only evolocumab has been evaluated in HoFH, providing up to \(\frac{30}{C24}\%\) reduction in LDL-C levels.\(^{45}\) As expected, evolocumab induced greater LDL-C decreases in patients with defective/defective and defective/negative LDL receptor (LDLR) mutations, but had very little effect in rare patients with negative/negative LDLR mutations. On this basis, the Task Force recommends considering evolocumab
treatment for HoFH patients except those with confirmed negative/ negative LDLR mutations for whom lomitapide may be a preferred option (see Box 3).

Patients with statin intolerance

Although statin therapy undoubtedly represents the first-line pharmacotherapy for LDL-C lowering for prevention and treatment of premature ASCVD, a proportion of patients report adverse effects. Many of these effects have not been confirmed in controlled trials (e.g. cataract, cancer, peripheral neuropathy, insomnia, fatigue, and neurocognitive symptoms), or have no clinically significant relevance (e.g. proteinuria, mild hepatic enzyme elevation). Two adverse effects are of particular concern; a moderately increased risk of developing type 2 diabetes, and, predominantly, statin-associated muscle symptoms (SAMS), which appear much more common in real world practice than in the published large trials. The latter has attracted most attention, given the well-established consequences of increased cardiovascular events and mortality associated with statin discontinuation.

Definitions of statin intolerance with emphasis on SAMS given by consensus groups and used in clinical trials with alirocumab and evolocumab have varied (Box 4). Although the aetiology is not fully elucidated, a proportion of patients treated with a statin manifest symptoms that remit after withdrawal and re-occur with rechallenge. It is noteworthy, however, that in both the ODYSSEY ALTERNATIVE and GAUSS trials, at least 50% of patients considered ‘statin intolerant’ were in fact tolerant of lower or intermittent dosing strategies with statin rechallenge. Nevertheless, the clinical effectiveness of such dosing regimens is not known.

Recommendations for management of SAMS in very high risk patients, further developed from a recent EAS Consensus Panel, are shown in Figure 3. Patients who complain of muscle symptoms and have a CK level <10-fold the upper limit of normal (ULN) should be interviewed and receive counselling from their clinician to emphasize the clinical benefits of statin therapy. After a statin washout, patients with CK ≥4 × ULN but <10 × ULN at baseline and with recurrent symptoms should successively undertake two dechallenges/rechallenges with separate statins, started at the lowest recommended daily dose; an additional statin challenge is recommended for patients with CK either normal or <4 × ULN at baseline. Patients with no symptoms after statin washout should continue statin treatment. All patients should be uptitrated to the maximally tolerated statin dose wherever possible, and ezetimibe should be considered in patients not at LDL-C goal.

This Task Force recommends that very high risk patients (as defined in the previous sections) intolerant of at least two statins at any dose, with muscle symptoms and/or CK elevation, and with substantially elevated LDL-C levels despite ezetimibe therapy (as defined previously in this document and in Figure 3) may be considered for treatment with a PCSK9 inhibitor. Furthermore, due to the complexity in establishing true statin intolerance and the risk of overdiagnosis of SAMS, the panel recommends centralization of this evaluation to ensure that the PCSK9 inhibitor is used appropriately. The role of the physician is especially important to best manage SAMS and encourage, wherever possible, statin as the recommended therapy for the prevention and treatment of ASCVD.

Cost vs. benefit

Based on the approved indications for alirocumab and evolocumab and estimates from EUROASPIRE IV, up to 80% of ASCVD patients in Europe would theoretically represent the patient pool for PCSK9 inhibitor therapy in secondary prevention, which is at present clearly not sustainable for health services given the cost of treatment. The UK National Institute for Health and Care Excellence approvals for alirocumab and evolocumab incorporated a model for a cost–benefit analysis, with LDL-C lowering as a surrogate to link to cardiovascular events. The incremental cost-effectiveness ratios were lowest for those groups proposed for consideration of PCSK9 inhibition in this consensus statement, e.g. with severe FH with CVD (<£25 000
Gaps and unanswered questions

There remain a number of unanswered questions regarding the clinical use of PCSK9 monoclonal antibody therapy, including long-term safety (see Box 5). More data are also needed in patients with coronary disease with comorbidities, including moderate-to-severe chronic kidney disease. An important question is whether and to what extent these treatments, added to statins, reduce ASCVD events in very high risk patients who do not attain LDL-C goal.

Conclusion

This ESC/EAS Task Force consensus document provides clinicians with practical guidance for the use of PCSK9 inhibitor treatment in patients at very high risk of (recurrent) cardiovascular events with poorly controlled LDL-C levels (see Box 3). This Joint Task Force recommends that treatment with a PCSK9 monoclonal antibody may be considered in very high risk patients with ASCVD (clinical or unequivocal on imaging4,5), including those with progressive ASCVD, or diabetes mellitus (with target organ damage or a major cardiovascular risk factor); or in patients with severe FH without ASCVD with substantially elevated LDL-C levels despite maximal statin/ezetimibe therapy. Patients in these groups with verified statin intolerance (SAMS) may be also considered for PCSK9 inhibition. These recommendations identify a patient population who are likely to derive most potential benefit from this novel therapy, while also taking account of the financial restraints within healthcare budgets. This document is based on current evidence for PCSK9 monoclonal antibody therapy, and will be re-evaluated with the availability of data from large, randomized cardiovascular outcomes studies evaluating the impact of these novel agents on ASCVD and related thromboembolic events.

Conflict of interest: Panel members have received research funding, and/or honoraria for advisory boards, consultancy or speaker...
Additional risk factors that indicate a very high cardiovascular risk include diabetes mellitus, elevated lipoprotein(a) > 50 mg/dL, marked hypertension, and premature familial ASCVD (<55 years in males and <60 years in females), as defined by the Sixth Joint Task Force (2016) and the European Atherosclerosis Society Consensus Panel on FH.4,30

The suggested thresholds for these patients are based on the consensus of this Joint ESC/EAS Task Force and represent a compromise between selection of patients at highest risk who are most likely to benefit from PCSK9 inhibition, and justification of the cost of treatment given financial restraints within healthcare budgets.

Box 4 Definitions for statin-associated muscle symptoms

<table>
<thead>
<tr>
<th>Consensus group</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS Consensus Panel</td>
<td>Clinical diagnostic definition, based on assessment of the probability of SAMS being due to a statin, taking into account the nature of the muscle symptoms, the elevation in CK levels and their temporal association with statin initiation, discontinuation, and rechallenge</td>
</tr>
<tr>
<td>Statin Muscle Safety Task Force</td>
<td>Statin intolerance is a real phenomenon that manifests mostly as an array of muscle-related symptoms (aching, stiffness, proximal motor weakness, fatigue, and back pain) Definition is based on symptoms plus the magnitude of elevation in CK</td>
</tr>
<tr>
<td>Trial</td>
<td></td>
</tr>
<tr>
<td>ODYSEY ALTERNATIVE</td>
<td>Intolerance to ≥ 2 statins, including one at the lowest approved starting dose</td>
</tr>
<tr>
<td>GAUSS</td>
<td>Intolerance to at least one statin because of muscle-related events</td>
</tr>
<tr>
<td>GAUSS-2</td>
<td>Intolerance to ≥ 2 statins, defined as inability to tolerate any dose or increase the dose above the smallest tablet strength because of intolerable muscle-related side effects</td>
</tr>
<tr>
<td>GAUSS-3</td>
<td>Intolerance to ≥ 3 statins or 2 statins (one of which was atorvastatin ≤ 10 mg/day) or with a history of marked CK elevation accompanied by muscle symptoms while on a statin</td>
</tr>
</tbody>
</table>
Figure 3 Algorithm for consideration of proprotein convertase subtilisin/kexin type 9 inhibitor treatment in very high risk patients with statin-associated muscle symptoms (SAMS), further developed from a recent consensus recommendation. ASCVD, atherosclerotic cardiovascular disease.

Very high risk defined by the Sixth Joint Task Force (2016) as documented clinical ASCVD (previous acute myocardial infarction, acute coronary syndrome, coronary revascularization and other arterial revascularization procedures, stroke and transient ischaemic attack, aortic aneurysm, and peripheral arterial disease); and unequivocally documented ASCVD on imaging (plaque on coronary angiography or carotid ultrasound; it does NOT include some increase in continuous imaging parameters such as intima–media thickness of the carotid artery). Patients with diabetes mellitus with target organ damage such as proteinuria, or with a major risk factor such as marked hypercholesterolaemia or marked hypertension are also considered as very high risk.

Additional risk factors that indicate a very high cardiovascular risk include diabetes mellitus, elevated lipoprotein(a), and premature familial ASCVD (<55 years in males and <60 years in females), as defined by the Sixth Joint Task Force (2016), and the European Atherosclerosis Society Consensus Panel on FH.

Suggested statin washout is dependent on creatine kinase (CK) elevation, i.e. 2–4 weeks if CK elevation is < 4 x ULN, and 6 weeks if CK elevation is > 4 x ULN.

Rapid progression of ASCVD is defined as repeated acute coronary syndromes, repeated unplanned coronary revascularizations, or repeated ischaemic strokes within 5 years of the index event. The suggested threshold for these patients is based on the consensus of this Joint ESC/EAS Task Force and represents a compromise between selection of patients at highest risk who are most likely to benefit from PCSK9 inhibition and justification of the cost of treatment given financial constraints within healthcare budgets. The Task Force recognizes that ASCVD patients with additional factors indicating a particularly high absolute cardiovascular risk (i.e. anticipated absolute risk reduction of > 2%/year), and with LDL-C levels between 2.6 and 3.4 mmol/L (100 and 140 mg/dL) may be considered for PCSK9 inhibition on an individual basis according to the attending clinician’s judgement of the absolute risk of the patient. This means that in this LDL-C range at present only patients with a 5-year risk of major adverse cardiovascular events > 20% would be recommended to be considered for PCSK9 inhibition, so that the anticipated absolute risk reduction can reach > 2%/year (based on the relation between absolute LDL-C reduction and prevented major adverse cardiac events in the Cholesterol Treatment Trialists’ Collaboration analysis). Here, both the absence of data from randomized clinical outcome trials at present and considerations for cost-effectiveness had to be taken into account.
Box 5 Unanswered questions about proprotein convertase subtilisin/kexin type 9 inhibitor treatment

Impact on regression vs. progression of atherosclerotic plaque, and plaque stability
Impact on cardiovascular outcomes
Long-term safety, including neurocognitive and immunogenic effects
Lower and upper age limits for treatment
Cost-effectiveness in patient populations at different levels of cardiovascular risk

References

