When and how to diagnose patent foramen ovale

F J Pinto

Heart 2005;91:438-440
doi:10.1136/hrt.2004.052233

Updated information and services can be found at:
http://heart.bmj.com/cgi/content/full/91/4/438

These include:

References
This article cites 31 articles, 15 of which can be accessed free at:
http://heart.bmj.com/cgi/content/full/91/4/438#BIBL

2 online articles that cite this article can be accessed at:
http://heart.bmj.com/cgi/content/full/91/4/438#BIBL

Rapid responses
You can respond to this article at:
http://heart.bmj.com/cgi/eletter-submit/91/4/438

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the
top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Congenital heart disease (517 articles)

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Heart go to:
http://journals.bmj.com/subscriptions/
P atent foramen ovale (PFO) is a common finding in the healthy population, with a prevalence of 27% in one necropsy study of 965 normal hearts from patients with no history of cardioembolic events. It is also the most common cardiac finding in young patients (< 55 years of age) with an unexplained cerebrovascular event, presumably caused by paradoxical emboli. The presumed mechanism is the migration of a thrombus (or less commonly air or fat) from the venous system to the left atrium via a PFO, with subsequent systemic embolisation. Determining whether paradoxical embolism has occurred through a PFO ideally requires the presence of the PFO “triatd”, which combines raised right atrial pressure, venous source of thrombosis, and the presence of PFO. The larger size of a PFO and greater number of microbubbles passing through a shunt during echocardiography has also been associated with an increased incidence of cerebrovascular events.

WHEN TO DIAGNOSE A PFO

Although PFO is becoming increasingly recognised as a cause for cryptogenic cerebrovascular events, there are other situations in which documenting a right to left shunt is important. The presence of a large PFO has been associated with severe unexplained decompression sickness caused by paradoxical gas embolism. Torti and colleagues showed in 250 scuba divers that the presence of a PFO was related to a low absolute risk of suffering five major decompression illness (DCI) events per 10 000 dives, the odds of which were five times as high as in divers without PFO. In addition they showed that the risk of suffering a major DCI parallels PFO size. Pulmonary arteriovenous malformations are frequently a manifestation of hereditary haemorrhagic telangiectasia. The presence of PFO has also been associated with persistent hypoxaemia in patients with elevated right heart pressures of various causes.

HOW TO DIAGNOSE A PFO

Transoesophageal echocardiography (TOE) is superior to transthoracic echocardiography (TTE) for the diagnosis of a PFO and delineation of its morphologic details (figs 1 and 2). Hence, TOE is regarded as the imaging procedure of choice in adult patients with suspected paradoxical embolism. For the detection of right-to-left shunting across a PFO, agitated saline contrast medium is typically injected into a peripheral vein during the strain phase of the Valsalva manoeuvre and the atrial septum is imaged during the release phase of this manoeuvre. The best angle for visualisation is around 90° corresponding to a more vertical plane. This is most likely due to the PFO orientation, which has a higher probability to affect the more cranial portion of the fossa ovalis where the lack of fusion of the septum primum and the septum secundum is expected (fig 3).

Although TOE is considered to be the “gold standard” technique for the diagnosis of right-to-left shunts, the use of sedation makes the performance of the Valsalva manoeuvre more difficult. Kuhl and colleagues looked at 111 patients with a cerebral event using a polygelatin contrast agent rather than agitated saline. In this selected group of patients the TTE was performed immediately following the TOE and hence the patient was still sedated, which may have limited their ability to perform a satisfactory Valsalva manoeuvre. Despite this they showed similar positive TTE and TOE for PFOs. Camp and colleagues studied 109 consecutive patients and detected 24 patients (22%) with a shunt by both TTE and TOE. Again in this study the TOE was

Abbreviations: DCI, decompression illness; PFO, patent foramen ovale, TOE, transoesophageal echocardiography; TTE, transthoracic echocardiography

Figure 1 Transoesophageal echocardiography of a patient with a patent foramen ovale (PFO), obtained at 85°, showing a wide separation in the inter-atrial septum (arrow). Ao, aortic root; IAS, inter-atrial septum; LA, left atrium; RA, right atrium.

Figure 2 The same patient during release of Valsalva and with injected agitated saline, showing the presence of several bubbles across the inter-atrial septum (IAS) into the left atrium (arrow).
Mini-symposium

Eustachian valve is frequently seen in patients with PFO. Ha and colleagues in their study of 136 consecutive stroke patients detected 40 patients with PFO. They found the sensitivity and specificity of TTE with harmonic imaging to be 62.5% and 100%, respectively, when compared to TOE as the "gold standard", with no TTE positive/TOE negative patients. More recently Clarke and colleagues have shown in a group of 110 patients that TTE in any PFO righting is a matter of expiratory pressure during the Valsalva manoeuvre. Previously, it was shown that in any PFO righting is a matter of expiratory pressure during the Valsalva manoeuvre. For a given PFO, the amount of right-to-left contrast shunt may be redirected from the fossa ovalis by this blood flow. As a note, the true anatomical size of the PFO. Because of the orientation of the inferior vena cava blood (which potentially contains an embolus arising from pelvic or deep vein thromb) to the fossa ovalis, even a large PFO may be missed if contrast agent is administered through a cubital vein, as these bubbles may be redirected from the fossa ovalis by this blood flow. These flow patterns are aggravated by a Eustachian valve which directs the blood from the inferior vena cava preferentially to the area of the fossa ovalis and can be studied by contrast administration into the foot vein. As a note, the Eustachian valve is frequently seen in patients with PFO. Moreover, there are reports showing that transthoracic contrast echocardiography with harmonic imaging mode may be too sensitive at the expense of a decreased specificity for PFO detection. Furthermore, the time to appearance of contrast bubbles in the left atrium, which is used as one of the distinguishing features between intracardiac and (physiological) intrapulmonary shunts, has shown to be unreliable.

Transcranial Doppler is an alternative method for detecting a PFO and is considered by some to be superior to the use of two dimensional echocardiographic imaging of the atrial septum after intravenous injection of saline contrast medium.

CONCLUSION

PFO became an important clinical condition to rule out in certain settings, particularly in young patients with cryptogenic stroke, although not confined only to this condition. The use of echocardiography, particularly of TOE with saline contrast, has been of paramount importance in the diagnosis of PFO. It is, however, important to understand the anatomy and physiology of the interatrial septum and related flow, as well as the potential limitations related with the use of this technique, in order that the likelihood of error is significantly reduced.

Correspondence to: Professor Fausto J Pinto, Department Cardiology—Univ Hospital Sta Maria, 1699 Lisboa—Portugal; fpinto@icvl.pt

REFERENCES


www.heartjnl.com

Figure 3 Schematic drawing demonstrating the anatomy of the interatrial septum and the potential superiority of using a more vertical plane (sector image to the left). See text for details. Ao, aorta; LA, left atrium; RA, right atrium; SVC, superior vena cava. Adapted from Chenzbraun et al. J Am Soc Echocardiogr 1993;6:417.
Multifocal right atrial thrombus without any cardiac disease in patient with thalassaemia major

An 18 year old woman was admitted to hospital because of exertion dyspnoea for two months. The patient had undergone splenectomy because of thalassaemia major six years previously. Transthoracic echocardiographic examination revealed two mobile, homogenous masses suggesting thrombus or myxoma at two separate locations in the right atrium. Both atrial and ventricular dimensions and functions were normal. A transoesophageal echocardiogram confirmed the presence of the two masses. The patient was referred for surgery. Histopathological examination of the specimen revealed an organised thrombus.

To our knowledge, this is the first report of a multifocal atrial thrombus occurring without any accompanying cardiac disease.

M S Ulgen
S Alan
M Sucu
msulgen@hotmail.com

Images in Cardiology

doi: 10.1136/hrt.2004.039446